A systematic search of the literature utilizing our search strategy yielded a total of 1,003 references, with 785 remaining after removal of duplicates. These 785 references were screened as abstracts with the preliminary inclusion criteria applied, following which 677 were excluded based on failing to meet the predetermined inclusion criteria. A total of 108 full texts articles underwent review, wherein both the predetermined inclusion and exclusion criteria were applied in the selection of full texts references. Of these 108 full text references sieved, 39 articles fulfilled all inclusion and exclusion criteria satisfactorily and were subsequently included in the meta-analysis (Figure 1Figure 1). In summary, 10 articles originated from Italy18x18D'Antimo, C, Biggi, F., Borean, A., Di Fabio, S., and Pirola, I. Combining a novel leucocyte–platelet-concentrated membrane and an injectable collagen scaffold in a single-step AMIC procedure to treat chondral lesions of the knee: a preliminary retrospective study. Eur J Orthop Surg Traumatol. 2017;
27: 673–681
Crossref | PubMed | Scopus (12) | Google ScholarSee all References, 19x19Pascarella, A, Ciatti, R., Pascarella, F., Latte, C., Di Salvatore, M.G., Liguori, L., and Iannella, G. Treatment of articular cartilage lesions of the knee joint using a modified AMIC technique. Knee Surg Sports Traumatol Arthrosc. 2010;
18: 509–513
Crossref | PubMed | Scopus (67) | Google ScholarSee all References, 20x20Schiavone Panni, A, Del Regno, C.., Mazzitelli, G.., D'Apolito, R.., Corona, K.., and Vasso, M. Good clinical results with autologous matrix-induced chondrogenesis (Amic) technique in large knee chondral defects. Knee Surg Sports Traumatol Arthrosc. 2018;
26: 1130–1136
PubMed | Google ScholarSee all References, 21x21Tradati, D, De Luca, P., Maione, A., Uboldi, F.M., Volpi, P., De Girolamo, L., and Berruto, M. AMIC-autologous matrix-induced chondrogenesis technique in patellar cartilage defects treatment: A retrospective study with a mid-term follow-up. Journal of Clinical Medicine. 2020;
9
Crossref | PubMed | Scopus (10) | Google ScholarSee all References, 22x22Gobbi, A, Karnatzikos, G., and Sankineani, S.R. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;
42: 648–657
Crossref | PubMed | Scopus (146) | Google ScholarSee all References, 23x23Gobbi, A and Whyte, G.P. One-Stage Cartilage Repair Using a Hyaluronic Acid-Based Scaffold With Activated Bone Marrow-Derived Mesenchymal Stem Cells Compared With Microfracture: Five-Year Follow-up. Am J Sports Med. 2016;
44: 2846–2854
Crossref | PubMed | Scopus (126) | Google ScholarSee all References, 24x24Gobbi, A, Scotti, C., Karnatzikos, G., Mudhigere, A., Castro, M., and Peretti, G.M. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc. 2017;
25: 2494–2501
Crossref | PubMed | Scopus (71) | Google ScholarSee all References, 25x25Gobbi, A and Whyte, G.P. Long-term Clinical Outcomes of One-Stage Cartilage Repair in the Knee With Hyaluronic Acid-Based Scaffold Embedded With Mesenchymal Stem Cells Sourced From Bone Marrow Aspirate Concentrate. Am J Sports Med. 2019;
47: 1621–1628
Crossref | PubMed | Scopus (52) | Google ScholarSee all References, 26x26Parma, A, Cavallo, M., Castagnini, F., Ruffilli, A., Bulzamini, M., and Giannini, S. Valgus high tibial osteotomy and bone-marrow-derived cells transplantation: Clinical and radiological results after a 3-year follow-up in varus osteoarthritis of the knee. J Orthop Traumatol. 2014;
15: S7
Google ScholarSee all References, 27x27De Girolamo, L, Schönhuber, H, Viganò, M et al. Autologous Matrix-Induced Chondrogenesis (AMIC) and AMIC enhanced by autologous concentrated Bone Marrow Aspirate (BMAC) Allow for stable clinical and functional improvements at up to 9 years follow-up: Results from a Randomized controlled study. Journal of Clinical Medicine. 2019;
8
Crossref | Scopus (33) | Google ScholarSee all References, seven from Germany28x28Anders, S, Volz, M.., Frick, H.., and Gellissen, J.A Randomized. Controlled Trial Comparing Autologous Matrix-Induced Chondrogenesis (AMIC R) to Microfracture: Analysis of 1- and 2-Year Follow-Up Data of 2 Centers. Open Orthop J. 2013;
7: 133–143
Crossref | PubMed | Google ScholarSee all References, 29x29Volz, M, Schaumburger, J., Frick, H., Grifka, J., and Anders, S. A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int Orthop. 2017;
41: 797–804
Crossref | PubMed | Scopus (97) | Google ScholarSee all References, 30x30Gille, J, Anders, S., Volpi, P., De Girolamo, L., Reiss, E., Zoch, W., and Behrens, P. Outcome of autologous matrix induced chondrogenesis (amic) in cartilage knee surgery: Data of the amic registry. Arthroscopy. 2013;
29: e49–e50
Abstract | Full Text | Full Text PDF | Google ScholarSee all References, 31x31Hoburg, A, Leitsch, J.M., Diederichs, G., Lehnigk, R., Perka, C., Becker, R., and Scheffler, S. Treatment of osteochondral defects with a combination of bone grafting and AMIC technique. Arch Orthop Trauma Surg. 2018;
138: 1117–1126
Crossref | PubMed | Scopus (13) | Google ScholarSee all References, 32x32Lahner, M, Ull, C., Hagen, M., von Schulze Pellengahr, C., Daniilidis, K., von Engelhardt, L.V., Lahner, N., and Teske, W. Cartilage Surgery in Overweight Patients: Clinical and MRI Results after the Autologous Matrix-Induced Chondrogenesis Procedure. Biomed Res Int. 2018;
2018: 6363245
Crossref | PubMed | Scopus (9) | Google ScholarSee all References, 33x33Migliorini, F, Eschweiler, J., Maffulli, N., Driessen, A., Rath, B., Tingart, M., and Schenker, H. Management of Patellar Chondral Defects with Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures: A Four Years Follow-Up Clinical Trial. Life (Basel). 2021;
11: 13
Google ScholarSee all References, 34x34Schagemann, J, Behrens, P., Paech, A., Riepenhof, H., Kienast, B., Mittelstadt, H., and Gille, J. Mid-term outcome of arthroscopic AMIC for the treatment of articular cartilage defects in the knee joint is equivalent to mini-open procedures. Arch Orthop Trauma Surg. 2018;
138: 819–825
Crossref | PubMed | Scopus (27) | Google ScholarSee all References, six were from South Korea35x35Yang, HY, Song, E.K., Kang, S.J., Kwak, W.K., Kang, J.K., and Seon, J.K. Allogenic umbilical cord blood-derived mesenchymal stromal cell implantation was superior to bone marrow aspirate concentrate augmentation for cartilage regeneration despite similar clinical outcomes. Knee Surg Sports Traumatol Arthrosc. 2021;
25: 25
Google ScholarSee all References, 36x36Ryu, DJ, Jeon, Y.S., Park, J.S., Bae, G.C., Kim, J.S., and Kim, M.K. Comparison of Bone Marrow Aspirate Concentrate and Allogenic Human Umbilical Cord Blood Derived Mesenchymal Stem Cell Implantation on Chondral Defect of Knee: Assessment of Clinical and Magnetic Resonance Imaging Outcomes at 2-Year Follow-Up. Cell Transplant. 2020;
29: 963689720943581
Crossref | PubMed | Scopus (13) | Google ScholarSee all References, 37x37Chung, YW, Yang, H.Y., Kang, S.J., Song, E.K., and Seon, J.K. Allogeneic umbilical cord blood-derived mesenchymal stem cells combined with high tibial osteotomy: a retrospective study on safety and early results. Int Orthop. 2021;
45: 481–488
Crossref | PubMed | Scopus (17) | Google ScholarSee all References, 38x38Kim, YS, Kwon, O.R., Choi, Y.J., Suh, D.S., Heo, D.B., and Koh, Y.G. Comparative Matched-Pair Analysis of the Injection Versus Implantation of Mesenchymal Stem Cells for Knee Osteoarthritis. Am J Sports Med. 2015;
43: 2738–2746
Crossref | PubMed | Scopus (81) | Google ScholarSee all References, 39x39Kim, YS, Choi, Y.J., Lee, S.W., Kwon, O.R., Suh, D.S., Heo, D.B., and Koh, Y.G. Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study. Osteoarthritis Cartilage. 2016;
24: 237–245
Abstract | Full Text | Full Text PDF | PubMed | Scopus (72) | Google ScholarSee all References, 40x40Koh, YG, Kwon, O.R., Kim, Y.S., Choi, Y.J., and Tak, D.H. Adipose-Derived Mesenchymal Stem Cells With Microfracture Versus Microfracture Alone: 2-Year Follow-up of a Prospective Randomized Trial. Arthroscopy. 2016;
32: 97–109
Abstract | Full Text | Full Text PDF | PubMed | Scopus (169) | Google ScholarSee all References, two each from France41x41Bertho, P, Pauvert, A, Pouderoux, T, and Robert, H. Orthopaedics, Traumatology Society of Western F. Treatment of large deep osteochondritis lesions of the knee by autologous matrix-induced chondrogenesis (AMIC): Preliminary results in 13 patients. Orthop Traumatol Surg Res. 2018;
104: 695–700
Abstract | Full Text | Full Text PDF | PubMed | Scopus (20) | Google ScholarSee all References,42x42Buda, R, Baldassarri, M., Perazzo, L., Ghinelli, D., and Pagliazzi, G. A useful combination for the treatment of patellofemoral chondral lesions: realignment procedure plus mesenchymal stem cell—retrospective analysis and clinical results at 48 months of follow-up. Eur J Orthop Surg Traumatol. 2019;
29: 461–470
Crossref | PubMed | Scopus (11) | Google ScholarSee all References, Poland43x43Piontek, T, Ciemniewska-Gorzela, K., Naczk, J., and Trzaska, T. All-arthroscopic technique to repair knee cartilage defects using the autologous matrix-induced chondrogenesis. Arthroscopy. 2013;
29: e137–e138
Abstract | Full Text | Full Text PDF | Google ScholarSee all References,44x44Sadlik, B, Puszkarz, M., Kosmalska, L., and Wiewiorski, M. All-Arthroscopic Autologous Matrix-Induced Chondrogenesis-Aided Repair of a Patellar Cartilage Defect Using Dry Arthroscopy and a Retraction System. J Knee Surg. 2017;
30: 925–929
Crossref | PubMed | Scopus (15) | Google ScholarSee all References, and Switzerland45x45Kaiser, N, Jakob, R.P., Pagenstert, G., Tannast, M., and Petek, D. Stable clinical long term results after AMIC in the aligned knee. Arch Orthop Trauma Surg. 2020;
13: 13
Google ScholarSee all References,46x46Kusano, T, Jakob, R.P., Gautier, E., Magnussen, R.A., Hoogewoud, H., and Jacobi, M. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc. 2012;
20: 2109–2115
Crossref | PubMed | Scopus (123) | Google ScholarSee all References, and one each from Argentina47x47Costa-Paz, M, Zícaro, J.P.., Rómoli, A.M.., and Yacuzzi, C. Autologous collagen-induced chondrogenesis: Clinical outcomes at minimum two-years follow-up. Orthop J Sports Med. 2018;
6
Google ScholarSee all References, Belgium48x48Dhollander, A, Moens, K., Van Der Maas, J., Verdonk, P., Almqvist, K.F., and Victor, J. Treatment of patellofemoral cartilage defects in the knee by autologous matrix-induced chondrogenesis (amic). Acta Orthop Belg. 2014;
80: 251–259
PubMed | Google ScholarSee all References, Brazil49x49Astur, DC, Lopes, J.C., Santos, M.A., Kaleka, C.C., Amaro, J.T., and Cohen, M. Surgical treatment of chondral knee defects using a collagen membrane - autologus matrix-induced chondrogenesis. Rev Bras Ortop. 2018;
53: 733–739
Crossref | PubMed | Scopus (8) | Google ScholarSee all References, Egypt50x50Haleem, AM, Singergy, A.A., Sabry, D., Atta, H.M., Rashed, L.A., Chu, C.R., El Shewy, M.T., Azzam, A., and Abdel Aziz, M.T. The Clinical Use of Human Culture-Expanded Autologous Bone Marrow Mesenchymal Stem Cells Transplanted on Platelet-Rich Fibrin Glue in the Treatment of Articular Cartilage Defects: A Pilot Study and Preliminary Results. Cartilage. 2010;
1: 253–261
Crossref | PubMed | Scopus (247) | Google ScholarSee all References, Greece51x51Kyriakidis, T, Iosifidis, M., Michalopoulos, E., Melas, I., Stavropoulos-Giokas, C., and Verdonk, R. Good mid-term outcomes after adipose-derived culture-expanded mesenchymal stem cells implantation in knee focal cartilage defects. Knee Surg Sports Traumatol Arthrosc. 2020;
28: 502–508
Crossref | PubMed | Scopus (16) | Google ScholarSee all References, Lithuania52x52Gudas, R, Maciulaitis, J., Staskunas, M., and Smailys, A. Clinical outcome after treatment of single and multiple cartilage defects by autologous matrix-induced chondrogenesis. J Orthop Surg (Hong Kong). 2019;
27: 2309499019851011
Crossref | PubMed | Scopus (6) | Google ScholarSee all References, Norway53x53Fossum, V, Hansen, A.K., Wilsgaard, T., and Knutsen, G. Collagen-Covered Autologous Chondrocyte Implantation Versus Autologous Matrix-Induced Chondrogenesis: A Randomized Trial Comparing 2 Methods for Repair of Cartilage Defects of the Knee. Orthop J Sports Med. 2019;
7
Crossref | PubMed | Scopus (22) | Google ScholarSee all References, Singapore54x54Chen Chou, AC and Tjoen Lie, D.T. Clinical Outcomes of an All-Arthroscopic Technique for Single-Stage Autologous Matrix-Induced Chondrogenesis in the Treatment of Articular Cartilage Lesions of the Knee. Arthroscopy. 2020;
2: e353–e359
Scopus (4) | Google ScholarSee all References, Slovenia55x55Martinčič, D, Leban, J., Filardo, G., Busacca, M., Barlič, A., Veber, M., and Drobnič, M. Autologous chondrocytes versus filtered bone marrow mesenchymal stem/stromal cells for knee cartilage repair—a prospective study. Int Orthop. 2020;
PubMed | Google ScholarSee all References, Turkey56x56Akgun, I, Unlu, M.C., Erdal, O.A., Ogut, T., Erturk, M., Ovali, E., Kantarci, F., Caliskan, G., and Akgun, Y. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg. 2015;
135: 251–263
Crossref | PubMed | Scopus (108) | Google ScholarSee all References. In total, 19 studies had a prospective study design, 13 were retrospective in nature, and six were randomized controlled trials (RCTs). A summary of the included studies can be found in Table 1Table 1, whilst a summary of the individual risks of bias and quality assessment of the included studies can be found within the supplementary material.

Figure 1
PRISMA Flow Diagram of Study Selection
Table 1Summary of Included StudiesAuthor | Year | Country | Study Design | Treatment | Sample Size | Age (Years) | Follow-up (Months) | Male (%) | Lesion Size (cm2) | BMI (kg/m2) |
---|
Akgun et al | 2015 | Turkey | RCT | Synovial MSC | 7 | 32.4 | 24.0 | 57.1 | 2.8 | 24.1 |
Anders et al | 2013 | Germany | RCT | AMIC (CG) | 8 | 35.0 | 24.0 | 87.5 | 3.8 | 27.4 |
Astur et al | 2018 | Brazil | Retrospective | AMIC (CG) | 7 | 37.2 | 12.0 | 85.7 | 2.1 | NR |
Bertho et al | 2018 | France | Prospective | AMIC (CG) | 13 | 29.5 | 25.0 | 61.5 | 3.7 | NR |
Buda et al | 2019 | France | Retrospective | AMIC/cBMA (HF) | 28 | 38.2 | 48.0 | 57.1 | NR | NR |
Chen Chou et al | 2020 | Singapore | Prospective | AMIC (HF) | 22 | 47.0 | 24.0 | 59.1 | NR | 26.5 |
Chung et al | 2021 | South Korea | Retrospective | hUCB-MSC | 93 | 56.6 | 20.4 | NR | 6.5 | 25.8 |
Costa-Paz et al | 2018 | Argentina | Prospective | AMIC (Gel) | 12 | 50.0 | 24.0 | 75.0 | NR | NR |
D'Antimo et al | 2017 | Italy | Retrospective | AMIC (Gel) | 25 | 29.0 | 12.0 | 80.0 | NR | NR |
De Girolamo et al | 2019 | Italy | RCT | AMIC (CG) | 12 | 30.0 | 100.0 | 41.7 | 3.8 | NR |
De Girolamo et al | 2019 | Italy | RCT | AMIC/cBMA (CG) | 12 | 30.0 | 100.0 | 66.7 | 3.4 | NR |
Dhollander et al | 2014 | Belgium | Prospective | AMIC (CG) | 10 | 37.2 | 24.0 | 80.0 | 4.2 | NR |
Fossum et al | 2019 | Norway | RCT | AMIC (CG) | 20 | 38.3 | 24.0 | 40.0 | 5.2 | 27.9 |
Gille et al | 2013 | Germany | Prospective | AMIC (CG) | 57 | 37.3 | 24.0 | 66.7 | 3.4 | NR |
Gobbi et al | 2014 | Italy | Prospective | AMIC/cBMA (CG) | 25 | 46.5 | 41.3 | 64.0 | 8.3 | 24.4 |
Gobbi et al | 2016 | Italy | Prospective | AMIC/cBMA (HF) | 25 | 47.0 | 60.0 | 64.0 | 9.6 | NR |
Gobbi et al | 2017 | Italy | Prospective | AMIC/cBMA (HF) | 20 | 50.0 | 48.7 | NR | 8.5 | NR |
Gobbi et al | 2019 | Italy | Prospective | AMIC/cBMA (HF) | 23 | 48.5 | 86.0 | 65.2 | 10.3 | 24.4 |
Gudas et al | 2019 | Lithuania | Retrospective | AMIC (CG) | 15 | 32.4 | 60.2 | 66.7 | 3.7 | NR |
Haleem et al | 2010 | Egypt | Prospective | BM-MSC | 5 | 25.4 | 14.2 | 80.0 | 5.8 | NR |
Hoburg et al | 2018 | Germany | Retrospective | AMIC (CG) | 15 | 26.0 | 49.2 | 60.0 | 5.0 | 25.6 |
Kaiser et al | 2020 | Switzerland | Retrospective | AMIC (CG) | 33 | 37.1 | 111.6 | 66.7 | 2.8 | NR |
Kim et al | 2015 | South Korea | Retrospective | AD-MSC | 20 | 59.1 | 28.8 | 35.0 | 5.8 | 26.6 |
Kim et al | 2016 | South Korea | Retrospective | AD-MSC | 20 | 57.9 | 27.9 | 55.0 | NR | 26.9 |
Koh et al | 2016 | South Korea | RCT | AD-MSC | 40 | 38.4 | 27.4 | 35.0 | 4.8 | 26.8 |
Kusano et al | 2012 | Switzerland | Retrospective | AMIC (CG) | 38 | 35.6 | 28.7 | 60.5 | 3.9 | 25.6 |
Kyriakidis et al | 2020 | Greece | Prospective | AD-MSC | 25 | 30.0 | 36.0 | 60.0 | 3.8 | 23.8 |
Lahner et al | 2018 | Germany | Prospective | AMIC (CG) | 10 | 44.7 | 14.7 | NR | 2.1 | 29.3 |
Martincic et al | 2020 | Slovenia | Prospective | AMIC/cBMA (CG) | 9 | 34.0 | 22.0 | 33.3 | 4.3 | 25.2 |
Migliorini et al | 2021 | Germany | Prospective | AMIC (CG) | 27 | 35.8 | 45.1 | 51.9 | 2.7 | 26.9 |
Parma et al | 2014 | Italy | Prospective | AMIC/cBMA (CG) | 29 | 47.3 | 36.3 | NR | NR | NR |
Pascarella et al | 2010 | Italy | Prospective | AMIC (CG) | 19 | 30.0 | 24.0 | 63.2 | 3.6 | NR |
Piontek et al | 2013 | Poland | Prospective | AMIC (CG) | 20 | NR | 24.0 | NR | NR | NR |
Ryu et al | 2020 | South Korea | Retrospective | AMIC/cBMA (HF) | 25 | 39.6 | 24.0 | 52.0 | 4.3 | 26.2 |
Ryu et al | 2020 | South Korea | Retrospective | hUCB-MSC | 27 | 53.9 | 24.0 | 40.7 | 4.8 | 26.4 |
Sadlik et al | 2017 | Poland | Prospective | AMIC (CG) | 12 | 36.0 | 38.0 | 58.3 | 2.5 | NR |
Schagemann et al | 2018 | Germany | Retrospective | AMIC (CG) | 50 | 35.9 | 24.0 | 60.0 | 3.3 | 25.1 |
Schiavonne et al | 2018 | Italy | Retrospective | AMIC (CG) | 21 | NR | 85.0 | NR | 4.9 | NR |
Tradati et al | 2020 | Italy | Retrospective | AMIC (CG) | 14 | 38.4 | 68.2 | 64.3 | 4.5 | NR |
Volz et al | 2017 | Germany | RCT | AMIC (CG) | 17 | 34.0 | 60.0 | 70.6 | 3.8 | 27.6 |
Yang et al | 2021 | South Korea | Retrospective | AMIC/cBMA (TS) | 55 | 56.4 | 31.0 | 23.6 | 6.2 | 27.2 |
View Table in HTML