Abstract
Introduction
Objectives
Methods
Results
Conclusions
Keywords
Introduction
- Palmer JS
- Jones LD
- Monk AP
- et al.
- Jones LD
- Brown CP
- Jackson W
- Monk AP
- Price AJ
- Lee YS
- Lee BK
- Lee SH
- Park HG
- Jun DS
- Moon DH
- Ollivier B
- Berger P
- Depuydt C
- Vandenneucker H
- Gao L
- Madry H
- Chugaev DV
- et al.
- Jones LD
- Brown CP
- Jackson W
- Monk AP
- Price AJ
Methods
Patient population
Positioning protocol


Radiographic measurements

Statistical analysis
Results

ICC | 95%-CI | ||
---|---|---|---|
HKA | Observer 1 | 0.990 | 0.986–0.993 |
Observer 2 | 0.977 | 0.968–0.984 | |
Observer 3 | 0.996 | 0.994–0.998 | |
Inter-observer reliability (1, 2, & 3) | 0.984 | 0.975–0.989 | |
mMPTA | Observer 1 | 0.974 | 0.964–0.982 |
Observer 2 | 0.903 | 0.864–0.932 | |
Observer 3 | 0.945 | 0.922–0.961 | |
Inter-observer reliability (1, 2, & 3) | 0.906 | 0.861–0.936 | |
mLDFA | Observer 1 | 0.912 | 0.874–0.939 |
Observer 2 | 0.850 | 0.791–0.893 | |
Observer 3 | 0.925 | 0.895–0.947 | |
Inter-observer reliability (1, 2, & 3) | 0.871 | 0.824–0.907 | |
JLCA | Observer 1 | 0.629 | 0.507–0.726 |
Observer 2 | 0.463 | 0.300–0.599 | |
Observer 3 | 0.676 | 0.565–0.763 | |
Inter-observer reliability (1, 2, & 3) | 0.507 | 0.395–0.611 |
Mean Absolute Error | 95%-CI Error | ICC | 95%-CI ICC | |
---|---|---|---|---|
All lower limbs (n = 60) | ||||
HKA | 0.442° | 0.386°−0.501° | 0.985 | 0.980–0.989 |
mMPTA | 0.783° | 0.683°−0.894° | 0.922 | 0.896–0.941 |
mLDFA | 0.828° | 0.711°−0.933° | 0.903 | 0.871–0.927 |
JLCA | 0.794° | 0.689°−0.900° | 0.632 | 0.534–0.712 |
Osteotomy (n = 4) | ||||
HKA | 0.350° | 0.183°−0.525° | 0.990 | 0.965–0.997 |
mMPTA | 0.500° | 0.214°−0.778° | 0.686 | 0.224–0.898 |
mLDFA | 1.083° | 0.600°−1.529° | 0.948 | 0.873–0.985 |
JLCA | 0.667° | 0.200°−1.250° | 0.792 | 0.385–0.937 |
Osteoarthritis (n = 14) | ||||
HKA | 0.417° | 0.313°−0.529° | 0.991 | 0.984–0.995 |
mMPTA | 0.690° | 0.488°−0.889° | 0.958 | 0.923–0.977 |
mLDFA | 0.810° | 0.600°−1.029° | 0.937 | 0.887–0.966 |
JLCA | 0.690° | 0.441°−0.936° | 0.734 | 0.558–0.847 |
(Osteo-)Chondral lesion (n = 16) | ||||
HKA | 0.463° | 0.360°−0.598° | 0.973 | 0.953–0.985 |
mMPTA | 0.833° | 0.659°−1.018° | 0.895 | 0.820–0.940 |
mLDFA | 0.833° | 0.618°−1.094° | 0.828 | 0.713–0.900 |
JLCA | 0.917° | 0.698°−1.156° | 0.347 | 0.071–0.573 |
Male (n = 30) | ||||
HKA | 0.412° | 0.348°−0.487° | 0.986 | 0.978–0.991 |
mMPTA | 0.700° | 0.576°−0.829° | 0.942 | 0.914–0.962 |
mLDFA | 0.678° | 0.550°−0.798° | 0.926 | 0.890–0.951 |
JLCA | 0.778° | 0.625°−0.935° | 0.581 | 0.427–0.703 |
Female (n = 30) | ||||
HKA | 0.471° | 0.396°−0.559° | 0.975 | 0.962–0.983 |
mMPTA | 0.867° | 0.726°−1.024° | 0.853 | 0.785–0.901 |
mLDFA | 0.978° | 0.787°−1.179° | 0.884 | 0.829–0.922 |
JLCA | 0.811° | 0.663°−0.970° | 0.670 | 0.539–0.770 |

Discussion
- Jones LD
- Brown CP
- Jackson W
- Monk AP
- Price AJ
- Jones LD
- Brown CP
- Jackson W
- Monk AP
- Price AJ
- Jansen MP
- Besselink NJ
- van Heerwaarden RJ
- et al.
- Nguyen HC
- Gielis WP
- van Egmond N
- et al.
- Nguyen HC
- Gielis WP
- van Egmond N
- et al.
- Jud L
- Trache T
- Tondelli T
- Fürnstahl P
- Fucentese SF
- Vlachopoulos L
- Nguyen HC
- Gielis WP
- van Egmond N
- et al.
- Jud L
- Trache T
- Tondelli T
- Fürnstahl P
- Fucentese SF
- Vlachopoulos L
- Maderbacher G
- Schaumburger J
- Baier C
- et al.
- Saffarini M
- Nover L
- Tandogan R
- et al.
- Nguyen HC
- Gielis WP
- van Egmond N
- et al.
- Jud L
- Trache T
- Tondelli T
- Fürnstahl P
- Fucentese SF
- Vlachopoulos L
- Nguyen HC
- Gielis WP
- van Egmond N
- et al.
- Jud L
- Trache T
- Tondelli T
- Fürnstahl P
- Fucentese SF
- Vlachopoulos L
Conclusions
Funding
Declaration of competing interest
Ethics approval
Author contributions
Acknowledgments
References
- Epidemiology of osteoarthritis: state of the evidence.Curr Opin Rheumatol. 2015; 27 (Epidemiology): 276-283https://doi.org/10.1097/BOR.0000000000000161
- Osteoarthritis.Lancet. 2015; 386: 376-387https://doi.org/10.1016/S0140-6736(14)60802-3
- Osteoarthritis.Lancet. 2019; 393: 1745-1759https://doi.org/10.1016/S0140-6736(19)30417-9
- Varus alignment of the proximal tibia is associated with structural progression in early to moderate varus osteoarthritis of the knee.Knee Surgery, Sport Traumatol Arthrosc. 2020; https://doi.org/10.1007/s00167-019-05840-5
- Full-limb and knee radiography assessments of varus-valgus alignment and their relationship to osteoarthritis disease features by magnetic resonance imaging.Arthritis Care Res. 2007; 57: 398-406https://doi.org/10.1002/art.22618
- High tibial osteotomy versus unicompartmental joint replacement in unicompartmental knee joint osteoarthritis: 7-10-Year follow-up prospective randomized study.Knee. 2001; 8: 187-194https://doi.org/10.1016/S0968-0160(01)00097-7
- Economic impact of lower-limb osteoarthritis worldwide : a systematic review of cost-of-illness studies.Osteoarthr Cartil. 2020; 24: 1500-1508https://doi.org/10.1016/j.joca.2016.03.012
- The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study.Lancet. 2017; 389: 1424-1430https://doi.org/10.1016/S0140-6736(17)30059-4
- Reliability of the imaging software in the preoperative planning of the open-wedge high tibial osteotomy.Knee Surg Sport Traumatol Arthrosc. 2015; : 846-851https://doi.org/10.1007/s00167-013-2700-z
- Assessing accuracy requirements in high tibial osteotomy: a theoretical, computer-based model using AP radiographs.Knee Surgery, Sport Traumatol Arthrosc. 2017; 25: 2952-2956https://doi.org/10.1007/s00167-016-4092-3
- Radiographic Assessment of Lower Limb Deformities.Princ Deform Correct. 2002; : 31-60https://doi.org/10.1007/978-3-642-59373-4_3
- Patterns of knee arthrosis and patellar subluxation.Clin Orthop Relat Res. 1994; 309: 56-63
- Lower limb malrotation is regularly present in long-leg radiographs resulting in significant measurement errors.J Knee Surg. 2021; 34: 108-114https://doi.org/10.1055/s-0039-1693668
- Presence of rotational errors in long leg radiographs after total knee arthroplasty and impact on measured lower limb and component alignment.Int Orthop. 2017; 41: 1553-1560https://doi.org/10.1007/s00264-017-3408-3
- Radiographic measurement of femorotibial rotation in weight-bearing.Acta radiol. 2001; 42: 207-217https://doi.org/10.1080/028418501127346512
- Pitfalls in determining knee alignment: a radographic cadaver study.J Knee Surg. 2007; 20: 210-215
- Radiographic measures of knee alignment in patients with varus gonarthrosis: effect of weightbearing status and associations with dynamic joint load.Am J Sports Med. 2007; 35: 65-70https://doi.org/10.1177/0363546506293024
- Effect of limb rotation on radiographic alignment in total knee arthroplasties.Arch Orthop Trauma Surg. 2010; 130: 451-457https://doi.org/10.1007/s00402-009-0999-1
- Effect of foot rotation on the mechanical axis and correlation between knee and whole leg radiographs.Knee Surgery, Sport Traumatol Arthrosc. 2013; 21: 2542-2547https://doi.org/10.1007/s00167-013-2419-x
- Relationships among foot position, lower limb alignment, and knee adduction moment in patients with degenerative knee osteoarthritis.J Phys Ther Sci. 2015; 27: 1-4
- Good long ‑ term survival and patient ‑ reported outcomes after high tibial osteotomy for medial compartment osteoarthritis.Knee Surgery, Sport Traumatol Arthrosc. 2020; https://doi.org/10.1007/s00167-020-06262-4
- How accurately does high tibial osteotomy correct the mechanical axis of an arthritic varus knee? A systematic review.Knee. 2016; 23: 925-935https://doi.org/10.1016/j.knee.2016.10.001
- Advances in modern osteotomies around the knee: report on the Association of Sports Traumatology, Arthroscopy, Orthopaedic surgery, Rehabilitation (ASTAOR) Moscow International Osteotomy Congress 2017.J Exp Orthop. 2019; 6https://doi.org/10.1186/s40634-019-0177-5
- Roentgenographic Assessment of the Hip-Knee-Ankle Axis in Medial Gonarthrosis.Clin Orthop Relat Res. 1993; 289 (PMID: 8472414): 195-196
- Efficacy of one-stage cartilage repair using allogeneic mesenchymal stromal cells and autologous chondron transplantation (IMPACT) compared to nonsurgical treatment for focal articular cartilage lesions of the knee: study protocol for a crossover randomize.Trials. 2020; 21: 1-11https://doi.org/10.1186/s13063-020-04771-8
- Knee joint distraction in regular care for treatment of knee osteoarthritis: a comparison with clinical trial data.PLoS ONE. 2020; 15: 1-15https://doi.org/10.1371/journal.pone.0227975
- Better clinical results after closed- compared to open-wedge high tibial osteotomy in patients with medial knee osteoarthritis and varus leg alignment.Knee Surgery, Sport Traumatol Arthrosc. 2016; 24: 34-41https://doi.org/10.1007/s00167-014-3303-z
- Guidelines for reporting reliability and agreement studies (GRRAS) were proposed.J Clin Epidemiol. 2011; 64: 96-106https://doi.org/10.1016/j.jclinepi.2010.03.002
- A simplified guide to determination of sample size requirements for estimating the value of intraclass correlation coefficient: a review.Arch Orofascial Sci. 2017; 12 (Available at:): 1-11
- Sample size requirements for increasing the precision of reliability estimates: problems and proposed solutions.J Clin Exp Neuropsychol. 1999; 21: 567-570https://doi.org/10.1076/jcen.21.4.567.886
- More accurate correction using “patient-specific” cutting guides in opening wedge distal femur varization osteotomies.Int Orthop. 2019; 43: 2285-2291https://doi.org/10.1007/s00264-018-4207-1
- Virtual 3D planning and patient specific surgical guides for osteotomies around the knee: a feasibility and proof-of-concept study.Bone Joint J. 2013; 95-B: 153-158https://doi.org/10.1302/0301-620X.95B11.32950
- Knee joint distraction compared with high tibial osteotomy and total knee arthroplasty: two-year clinical, radiographic, and biochemical marker outcomes of two randomized controlled trials.Cartilage. 2019; 100https://doi.org/10.1177/1947603519828432
Kawahara S., Mawatari T., Matsui G., Mizu H., Akasaki Y. Malrotation of whole - leg radiograph less than 10 degrees does not influence preoperative planning in open - wedge high tibial osteotomy. 2020;1–7. doi:10.1002/jor.24845
- The need for a standardized whole leg radiograph guideline: the effects of knee flexion, leg rotation, and X-ray beam height.J Cartil Jt Preserv. 2021; 1100022https://doi.org/10.1016/j.jcjp.2021.100022
- Rotation or flexion alters mechanical leg axis measurements comparably in patients with different coronal alignment.Knee Surgery, Sport Traumatol Arthrosc. 2019; (0123456789)https://doi.org/10.1007/s00167-019-05779-7
- The Role of Flexion Contracture on Outcomes in Primary Total Knee Arthroplasty.J Arthroplasty. 2007; 22: 1092-1096https://doi.org/10.1016/j.arth.2006.11.009
- Predicting knee rotation by the projection overlap of the proximal fibula and tibia in long-leg radiographs.Knee Surgery, Sport Traumatol Arthrosc. 2014; 22: 2982-2988https://doi.org/10.1007/s00167-014-3327-4
- Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis.Clin Orthop Relat Res. 2008; 466: 2751-2755https://doi.org/10.1007/s11999-008-0452-8
- The original Akagi line is the most reliable: a systematic review of landmarks for rotational alignment of the tibial component in TKA.Knee Surgery, Sport Traumatol Arthrosc. 2018; 27: 1018-1027https://doi.org/10.1007/s00167-018-5131-z
- Normal Lower Limb Alignment and Joint Orientation.Principles of Deformity Correction. Springer Berlin Heidelberg, Berlin, Heidelberg2002: 1-18
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy