Abstract
Introduction
Objectives
Methods
Results
Conclusions
Keywords
Introduction
- Madry H.
- van Dijk C.N.
- Mueller-Gerbl M.
- Bisson L.J.
- Phillips P.
- Matthews J.
- et al.
The osteochondral unit and bone marrow lesions


Classification of bone marrow lesions
Traumatic bone marrow lesions
- Sanders T.G.
- Medynski M.A.
- Feller J.F.
- Lawhorn K.W.
- Bretlau T.
- Tuxøe J.
- Larsen L.
- Jørgensen U.
- Thomsen H.S.
- Lausten G.S.
Atraumatic bone marrow lesions
Subchondral insufficiency fractures
- Huizinga J.L.
- Shah N.
- Smith S.E.
- et al.
- Kon E.
- Ronga M.
- Filardo G.
- et al.
Osteonecrosis
- Fujita S.
- Arai Y.
- Honjo K.
- Nakagawa S.
- Kubo T.
- Kon E.
- Ronga M.
- Filardo G.
- et al.
Bone marrow lesions in osteoarthritis
- Compagnoni R.
- Lesman J.
- Ferrua P.
- et al.
Bone marrow lesions and cartilage
- LB L.
- A V.
- PG B
Biology of bmac and subchondral bone
- Madry H.
- Gao L.
- Eichler H.
- Orth P.
- Cucchiarini M.
- Madry H.
- Gao L.
- Eichler H.
- Orth P.
- Cucchiarini M.
- Madry H.
- Gao L.
- Eichler H.
- Orth P.
- Cucchiarini M.
- Madry H.
- Gao L.
- Eichler H.
- Orth P.
- Cucchiarini M.
- Everts P.A.
- Ferrell J.
- Mahoney C.
- et al.
Biomechanics of subchondral bone
- Madry H.
- van Dijk C.N.
- Mueller-Gerbl M.
- Primorac D.
- Molnar V.
- Rod E.
- et al.
- Heijink A.
- Gomoll A.H.
- Madry H.
- et al.
Treatment options
- Gobbi A.
- Karnatzikos G.
- Kumar A.
Gobbi A, Dallo I, Rogers C, et al. Two-year clinical outcomes of autologous microfragmented adipose tissue in elderly patients with knee osteoarthritis: a multi-centric, international study. Int Orthop. 2021; doi:10.1007/s00264-021-04947-0
Osteo-core-plasty an emerging minimally invasive one-stage treatment for subchondral bone marrow lesions
- Chen W.C.W.
- Péault B.
- Huard J.
The technique






Conclusions
Funding
Author contributions
Declaration of competing interest
References
- The basic science of the subchondral bone.Knee Surg Sports Traumatol Arthrosc. 2010; 18 (Apr): 419-433https://doi.org/10.1007/s00167-010-1054-z
- MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis.Osteoarthritis Cartilage. 2009; 17: 1115-1131https://doi.org/10.1016/j.joca.2009.03.012
- Early MRI diagnosis and non-surgical management of spontaneous osteonecrosis of the knee.Knee. 2007; 14 (Mar): 112-116https://doi.org/10.1016/j.knee.2006.10.012
- Osteonecrosis of the knee and related conditions.J Am Acad Orthop Surg. 2011; 19 (Aug): 482-494https://doi.org/10.5435/00124635-201108000-00004
- Aetiology and pathogenesis of bone marrow lesions and osteonecrosis of the knee.EFORT Open Rev. 2016; 1 (May): 219-224https://doi.org/10.1302/2058-5241.1.000044
- Association between bone marrow lesions, chondral lesions, and pain in patients without radiographic evidence of degenerative joint disease who underwent arthroscopic partial meniscectomy.Orthop J Sports Med. 2019; 7 (Mar)2325967119830381https://doi.org/10.1177/2325967119830381
- One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up.Cartilage. 2011; 2 (Jul): 286-299https://doi.org/10.1177/1947603510392023
- Platelet-rich plasma treatment in symptomatic patients with knee osteoarthritis: preliminary results in a group of active patients.Sports Health. 2012; 4 (Mar): 162-172https://doi.org/10.1177/1941738111431801
- Editorial commentary: biological cartilage repair technique-an "effective, accessible, and safe" surgical solution for an old difficult biological problem.Arthroscopy. 2020; 36 (Mar): 859-861https://doi.org/10.1016/j.arthro.2019.12.020
- Long-term clinical outcomes of one-stage cartilage repair in the knee with hyaluronic acid-based scaffold embedded with mesenchymal stem cells sourced from bone marrow aspirate concentrate.Am J Sports Med. 2019; 47 (Jun): 1621-1628https://doi.org/10.1177/0363546519845362
- Osteo-core plasty: a minimally invasive approach for subchondral bone marrow lesions of the knee.Arthrosc Tech. 2020; 9 (Nov): e1773-e1777https://doi.org/10.1016/j.eats.2020.07.023
- Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging.AJR Am J Roentgenol. 1998; 170 (Jan): 71-77https://doi.org/10.2214/ajr.170.1.9423603
- Bone bruises associated with ACL rupture: correlation with injury mechanism.Am J Sports Med. 2008; 36 (May): 927-933https://doi.org/10.1177/0363546508314791
- MRI of the knees in asymptomatic adolescent soccer players: a case-control study.J Magn Reson Imaging. 2017; 45 (Jan): 59-65https://doi.org/10.1002/jmri.25329
- Magnetic resonance imaging of asymptomatic knees in collegiate basketball players: the effect of one season of play.Clin J Sport Med. 2016; 26 (Nov): 483-489https://doi.org/10.1097/jsm.0000000000000283
- MR imaging of the knee: findings in asymptomatic collegiate basketball players.AJR Am J Roentgenol. 2002; 179 (Sep): 641-644https://doi.org/10.2214/ajr.179.3.1790641
- Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury.Radiographics. 2000; 20 (OctSpec No:S135-51)https://doi.org/10.1148/radiographics.20.suppl_1.g00oc19s135
- Association between traumatic bone marrow abnormalities of the knee, the trauma mechanism and associated soft-tissue knee injuries.Eur Radiol. 2017; 27 (Jan): 393-403https://doi.org/10.1007/s00330-016-4339-x
- Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball.Am J Sports Med. 2010; 38 (Nov): 2218-2225https://doi.org/10.1177/0363546510373570
- Bone bruise in the acutely injured knee.Knee Surg Sports Traumatol Arthrosc. 2002; 10 (Mar): 96-101https://doi.org/10.1007/s00167-001-0272-9
- Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures.Arthroscopy. 2001; 17 (May): 445-449https://doi.org/10.1053/jars.2001.23581
- Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging.Radiology. 1991; 178 (Jan): 271-276https://doi.org/10.1148/radiology.178.1.1984319
- The effect of a geographic lateral bone bruise on knee inflammation after acute anterior cruciate ligament rupture.Am J Sports Med. 2000; 28 (Mar-Apr): 152-155https://doi.org/10.1177/03635465000280020301
- Anterior cruciate ligament injury: post-traumatic bone marrow oedema correlates with long-term prognosis.Int Orthop. 2016; 40 (Jan): 183-190https://doi.org/10.1007/s00264-015-2672-3
- Osteochondral lesions of the knee: differentiating the most common entities at MRI.Radiographics. 2018; 38 (Sep-Oct): 1478-1495https://doi.org/10.1148/rg.2018180044
- Prevalence of undiagnosed subchondral insufficiency fractures of the knee in middle age adults with knee pain and suspected meniscal tear.Osteoarthr Cartil Open. 2020; 2 (Dec)https://doi.org/10.1016/j.ocarto.2020.100089
- Bone marrow lesions and subchondral bone pathology of the knee.Knee Surg Sports Traumatol Arthrosc. 2016; 24 (Jun): 1797-1814https://doi.org/10.1007/s00167-016-4113-2
- Metaphyseal burst sign: a secondary sign on MRI of subchondral insufficiency fracture of the knee.J Med Imaging Radiat Oncol. 2018; 62 (Dec): 764-768https://doi.org/10.1111/1754-9485.12781
- Spontaneous osteonecrosis/subchondral insufficiency fractures of the knee: high rates of conversion to surgical treatment and arthroplasty.J Bone Joint Surg Am. 2020; 102 (May 6): 821-829https://doi.org/10.2106/jbjs.19.00381
- Subchondral insufficiency fracture of the knee: grading, risk factors, and outcome.Skeletal Radiol. 2019; 48 (Dec): 1961-1974https://doi.org/10.1007/s00256-019-03245-6
- Presumptive subarticular stress reactions of the knee: MRI detection and association with meniscal tear patterns.Skeletal Radiol. 2004; 33 (May): 260-264https://doi.org/10.1007/s00256-004-0751-4
- Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study.Osteoarthritis Cartilage. 2010; 18 (Jan): 47-53https://doi.org/10.1016/j.joca.2009.08.018
- Spontaneous Osteonecrosis of the Knee.Arthritis & Rheumatism. 1968; 11: 705-733https://doi.org/10.1002/art.1780110602
- Osteonecrosis of the knee: review.Ann Transl Med. 2015; 3 (Jan): 6https://doi.org/10.3978/j.issn.2305-5839.2014.11.13
- Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture.J Bone Joint Surg Am. 2000; 82 (Jun): 858-866https://doi.org/10.2106/00004623-200006000-00013
- The role of meniscal tears in spontaneous osteonecrosis of the knee: a systematic review of suspected etiology and a call to revisit nomenclature.Am J Sports Med. 2019; 47 (Feb): 501-507https://doi.org/10.1177/0363546517743734
- A case of spontaneous osteonecrosis of the knee with early and simultaneous involvement of the medial femoral condyle and medial tibial plateau.Case Rep Orthop. 2016; 20162574975https://doi.org/10.1155/2016/2574975
- Pathophysiology and risk factors for osteonecrosis.Curr Rev Musculoskelet Med. 2015; 8 (Sep): 201-209https://doi.org/10.1007/s12178-015-9277-8
- Osteonecrosis of the patella in patients with nontraumatic osteonecrosis of the femoral head: MRI findings in 60 patients.Acta Orthop Scand. 2000; 71 (2000/01/01): 447-451https://doi.org/10.1080/000164700317381108
- Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis.Ann Rheum Dis. 2009; 68 (Sep): 1461-1465https://doi.org/10.1136/ard.2008.096834
- Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis.Arthritis Rheum. 2006; 54 (May): 1529-1535https://doi.org/10.1002/art.21789
- Bone marrow edema-like lesions change in volume in the majority of patients with osteoarthritis; associations with clinical features.Eur Radiol. 2007; 17 (Dec): 3073-3078https://doi.org/10.1007/s00330-007-0711-1
- Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging.Arthritis Rheum. 2007; 56 (Sep): 2986-2992https://doi.org/10.1002/art.22851
- Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review.Ann Rheum Dis. 2011; 70 (Jan): 60-67https://doi.org/10.1136/ard.2010.131904
- Validation of a new topographic classification of bone marrow lesions in the knee: the six-letter system.Knee Surg Sports Traumatol Arthrosc. 2021; 29 (Feb): 333-341https://doi.org/10.1007/s00167-020-05957-y
- Importance of subchondral bone to articular cartilage in health and disease.Top Magnet Reson Imag. 1999; 10: 180-192
- The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon.The Journal of Bone and Joint Surgery British volume. 1977; 59-B: 272-278https://doi.org/10.1302/0301-620x.59b3.893504
- Intraosseous phlebography, intraosseous pressure measurements and 99mTC-polyphosphate scintigraphy in patients with various painful conditions in the hip and knee.Acta Orthop Scand. 1980; 51 (Feb): 19-28https://doi.org/10.3109/17453678008990764
- Subchondral bone and the osteochondral unit: basic science and clinical implications in sports medicine.Sports Health. 2018; 10 (Sep/Oct): 412-418https://doi.org/10.1177/1941738118782453
- Association of subchondral bone texture on magnetic resonance imaging with radiographic knee osteoarthritis progression: data from the osteoarthritis initiative bone ancillary study.Eur Radiol. 2018; 28 (Nov): 4687-4695https://doi.org/10.1007/s00330-018-5444-9
- Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation.Arch Orthop Trauma Surg. 2010; 130 (2010/08/01): 977-983https://doi.org/10.1007/s00402-010-1049-8
- Correlation between magnetic resonance imaging and clinical outcomes after cartilage repair surgery in the knee: a systematic review and meta-analysis.Am J Sports Med. 2013; 41 (Jun): 1426-1434https://doi.org/10.1177/0363546513485931
- Bone marrow aspirate concentrate-enhanced marrow stimulation of chondral defects.Stem Cells Int. 2017; 20171609685https://doi.org/10.1155/2017/1609685
- A comparative quantification in cellularity of bone marrow aspirated with two new harvesting devices, and the non-equivalent difference between a centrifugated bone marrow concentrate and a bone marrow aspirate as biological injectates, using a bi-lateral patient model.J Stem Cell Res Ther. 2020; 10: 1-10
- Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells.Int Orthop. 2013; 37 (Nov): 2279-2287https://doi.org/10.1007/s00264-013-2017-z
- The subchondral bone is affected by bone marrow stimulation: a systematic review of preclinical animal studies.Cartilage. 2019; 10: 70-81https://doi.org/10.1177/1947603517711220
- Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes.Arthritis Res. Ther. 2013; 15: 223https://doi.org/10.1186/ar4405
- The basic science of the subchondral bone.Knee Surg, Sport Traumatol, Arthroscop. 2010; 18: 419-433https://doi.org/10.1007/s00167-010-1054-z
- Association of malalignment, muscular dysfunction, proprioception, laxity and abnormal joint loading with tibiofemoral knee osteoarthritis - a systematic review and meta-analysis.BMC Musculoskelet Disord. 2018; 19 (Jul 28): 273https://doi.org/10.1186/s12891-018-2202-8
- Osteoarthritis: toward a comprehensive understanding of pathological mechanism.Bone Res. 2017; 5: 16044https://doi.org/10.1038/boneres.2016.44
- Knee osteoarthritis: a review of pathogenesis and state-of-the-art non-operative therapeutic considerations.Genes (Basel). 2020; 11 (Jul 26)https://doi.org/10.3390/genes11080854
- Bone marrow lesions are associated with altered trabecular morphometry.Osteoarthritis Cartilage. 2012; 20 (Dec): 1519-1526https://doi.org/10.1016/j.joca.2012.08.013
- Biomechanical considerations in the pathogenesis of osteoarthritis of the knee.Knee Surg Sports Traumatol Arthrosc. 2012; 20 (Mar): 423-435https://doi.org/10.1007/s00167-011-1818-0
- Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes.Knee Surg Sports Traumatol Arthrosc. 2014; 22 (Sep): 1986-1996https://doi.org/10.1007/s00167-013-2676-8
- Treating severe knee osteoarthritis with combination of intra-osseous and intra-articular infiltrations of platelet-rich plasma: an observational study.Cartilage. 2019; 10 (Apr): 245-253https://doi.org/10.1177/1947603518756462
Gobbi A, Dallo I, Rogers C, et al. Two-year clinical outcomes of autologous microfragmented adipose tissue in elderly patients with knee osteoarthritis: a multi-centric, international study. Int Orthop. 2021; doi:10.1007/s00264-021-04947-0
- Subchondral bone or intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis: what better postpone knee arthroplasty at fifteen years? A randomized study.Int Orthop. 2021; 45 (Feb): 391-399https://doi.org/10.1007/s00264-020-04687-7
- Subchondroplasty for treating bone marrow lesions.J Knee Surg. 2016; 29 (Oct): 555-563https://doi.org/10.1055/s-0035-1568988
- Regenerative translation of human blood-vessel-derived MSC precursors.Stem Cells Int. 2015; 2015 (2015/07/26)375187https://doi.org/10.1155/2015/375187
- Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling.Histochem J. 1996; 28 (Apr): 229-245
- Isolation of clinically relevant concentrations of bone marrow mesenchymal stem cells without centrifugation.J Transl Med. 2019; 17 (Jan 5): 10https://doi.org/10.1186/s12967-018-1750-x
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy
ScienceDirect
Access this article on ScienceDirectLinked Article
- Welcome to the third issue of JCJP!Journal of Cartilage & Joint PreservationVol. 1Issue 3
- PreviewAs your new Editor-in-Chief, it is my honor to introduce this issue of the Journal of Joint Preservation and Cartilage Restoration (JCJP), the official journal of the International Cartilage Regeneration & Joint Preservation Society (ICRS). As many of our readers already know, this journal is an exciting new endeavor sponsored and supported by ICRS, and made possible through Elsevier. I am excited to work with our entire editorial team on our vision to expand upon the incredible foundation established by inaugural Editor-in-Chief, Dr.
- Full-Text
- Preview