ABSTRACT
Introduction
Objective
Methods
Results
Conclusions
Keywords
Introduction
- Wylie JD
- Kim Y-J.
- Haneda M
- Rai MF
- O'Keefe RJ
- Brophy RH
- Clohisy JC
- Pascual-Garrido C.
Methods
Acquisition of cartilage samples
- Haneda M
- Rai MF
- O'Keefe RJ
- Brophy RH
- Clohisy JC
- Pascual-Garrido C.

Gene expression analysis
Primers | Sequences | Product length (bp) |
---|---|---|
GAPDH | 5´-ACCCAGAAGACTGTGGATGG-3´5´-GAGGCAGGGATGATGTTCTG-3´ | 80 |
ACAN | 5´-GGCACTAGTCAACCCTTTGG-3´5´-CTGAACCCTGGTAACCCTGA-3´ | 95 |
COL2A1 | 5´-CGCACCTGCAGAGACCTGAA-3´5´-TCTTCTTGGGAACGTTTGCTGG-3´ | 163 |
SOX9 | 5´-ACCACCCGGATTACAAGTACCA-3´5´-TTGAAGATGGCGTTGGGGGAG-3´ | 112 |
MMP3 | 5´-TGAAGAGTCTTCCAATCCTACTGTTG-3´5´-CTAGATATTTCTGAACAAGGTTCATGCA-3´ | 114 |
MMP13 | 5´-GGACAAGTAGTTCCAAAGGCTACAA-3´5´-CTTTTGCCGGTGTAGGTGTAGATAG-3´ | 130 |
ADAMTS4 | 5´-GGCTAAAGCGCTACCTGCTA-3´5´-GAGTCACCACCAAGCTGACA-3´ | 93 |
IL-1β | 5´-TCCAGGAGAATGACCTGAGC-3´5´-GTGATCGTACAGGTGCATCG-3´ | 111 |
CCL3L1 | 5´-GTCCTCTCTGCACCACTTGC-3´5´-GGAAGATGACACTGGGCTTG-3´ | 136 |
BCL2 | 5´- CTTTGAGTTCGGTGGGGTCA -3´5´- GGGCCGTACAGTTCCACAAA -3´ | 162 |
ASF1A | 5´-GTGCATCGAGGACCTGTCTG-3´5´-CGGGAACAGGACCCACTAAA-3´ | 113 |
P21 | 5´-AGGATGACAAGCAGAGAGCCC-3´5´-AAGGGGAGGATTTGACGAGTG-3´ | 186 |
P16 | 5´-CTGAGGCGCCCTTTGGTTA-3´5´-AAACTACGAAAGCGGGGTGG-3´ | 238 |
P53 | 5´-GTTCCGAGAGCTGAATGAGG-3´5´-TTATGGCGGGAGGTAGACTG-3´ | 123 |
FasL | 5´-TCAATGAAACTGGGCTGTACTTT-3´5´-AGAGTTCCTCATGTAGACCTTGT-3´ | 101 |
Histological analyses
Statistical analysis
Results
Gene expression analysis

Safranin o staining analysis

SO+ | SO- | P value | ||
---|---|---|---|---|
Gender | Male | 50.0% (n = 6) | 50.0% (n = 6) | 0.999 |
Female | 53.8% (n = 7) | 46.2% (n = 6) |
Immunostaining analyses

Discussion
- Wylie JD
- Kim Y-J.
- Rose BJ
- Kooyman DL.
- Rose BJ
- Kooyman DL.
- Lau L
- Porciuncula A
- Yu A
- Iwakura Y
- David G.
- Haneda M
- Rai MF
- O'Keefe RJ
- Brophy RH
- Clohisy JC
- Pascual-Garrido C.
- Haneda M
- Rai MF
- O'Keefe RJ
- Brophy RH
- Clohisy JC
- Pascual-Garrido C.
Conclusion
Declaration of competing interests
References
- Etiology and pathomechanics of femoroacetabular impingement.Curr Rev Musculoskelet Med. 2019; : 253-259https://doi.org/10.1007/s12178-019-09559-1
- The natural history of femoroacetabular impingement.J Pediatr Orthop. 2019; 39 (Supplement 1 Suppl 1): S28-S32https://doi.org/10.1097/BPO.0000000000001385
- The etiology of femoroacetabular impingement: what we know and what we don't.Sports Health. 2014; 6: 157-161https://doi.org/10.1177/1941738114521576
- Osteoarthritis.The Lancet. 2015; 386: 376-387https://doi.org/10.1016/S0140-6736(14)60802-3
- Does femoroacetabular impingement contribute to the development of hip osteoarthritis? A systematic review.Sports Med Arthrosc Rev. 2015; 23: 174-179https://doi.org/10.1097/JSA.0000000000000091
- Cartilage cell clusters.Arthritis Rheum. 2010; 62: 2206-2218https://doi.org/10.1002/art.27528
- Inflammatory response of articular cartilage to femoroacetabular impingement in the hip.Am J Sports Med. 2020; 363546520918804https://doi.org/10.1177/0363546520918804
- Classifications in brief: tönnis classification of hip osteoarthritis.Clin Orthop Relat Res. 2018; 476: 1680-1684https://doi.org/10.1097/01.blo.0000534679.75870.5f
- The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement.J Bone Joint Surg Br. 2002; 84: 556-560https://doi.org/10.1302/0301-620x.84b4.12014
- Molecular characterization of articular cartilage from young adults with femoroacetabular impingement.J Bone Joint Surg Am. 2013; 95: 1457-1464https://doi.org/10.2106/JBJS.L.00497
- Inflammation and degeneration in cartilage samples from patients with femoroacetabular impingement.J Bone Joint Surg Am. 2016; 98: 135-141https://doi.org/10.2106/JBJS.O.00443
- Characterization of primary chondrocytes harvested from hips with femoroacetabular impingement.Osteoarthr Cartil. 2016; 24: 1622-1628https://doi.org/10.1016/j.joca.2016.04.011
- The reliability of the Mankin score for osteoarthritis.J Orthop Res. 1992; 10: 58-61https://doi.org/10.1002/jor.1100100107
- Matrix metalloproteinases: the clue to intervertebral disc degeneration?.Spine. 1998; 23: 1612-1626https://doi.org/10.1097/00007632-199807150-00021
- A tale of two joints: the role of matrix metalloproteases in cartilage biology.Dis Markers. 2016; 2016https://doi.org/10.1155/2016/4895050
- Expression and significance of MMP3 in synovium of knee joint at different stage in osteoarthritis patients.Asian Pac J Trop Med. 2014; 7: 297-300https://doi.org/10.1016/S1995-7645(14)60042-0
- distinct pattern of inflammation of articular cartilage and the synovium in early and late hip femoroacetabular impingement.Am J Sports Med. 2020; 48: 2481-2488https://doi.org/10.1177/0363546520935440
- The senescence-associated secretory phenotype and its regulation.Cytokine. 2019; 117: 15-22https://doi.org/10.1016/j.cyto.2019.01.013
- Arsenic induces human chondrocyte senescence and accelerates rat articular cartilage aging.Arch Toxicol. 2020; 94: 89-101https://doi.org/10.1007/s00204-019-02607-2
- Ageing and the pathogenesis of osteoarthritis.Nat Rev Rheumatol. 2016; 12: 412-420https://doi.org/10.1038/nrrheum.2016.65
- Uncoupling the senescence-associated secretory phenotype from cell cycle exit via interleukin-1 inactivation unveils its protumorigenic role.Mol Cell Biol. 2019; 39https://doi.org/10.1128/MCB.00586-18
- Cellular Model of p21-Induced Senescence.Methods Mol Biol. 2017; 1534: 31-39https://doi.org/10.1007/978-1-4939-6670-7_3
- p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis.Arthritis Res Ther. 2014; 16: R58https://doi.org/10.1186/ar4494
- The p53 pathway: positive and negative feedback loops.Oncogene. 2005; 24: 2899-2908https://doi.org/10.1038/sj.onc.1208615
- Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration.Osteoarthr Cartil. 2016; 24: 196-205https://doi.org/10.1016/j.joca.2015.07.008
- To clear, or not to clear (senescent cells)? That is the question.Bioessays. 2016; 38: S56-S64https://doi.org/10.1002/bies.201670910
- p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2.Mol Cancer Res. 2005; 3: 627-634https://doi.org/10.1158/1541-7786.MCR-05-0121
- p21 (CDKN1A) is a negative regulator of p53 stability.Cell Cycle. 2007; 6: 1468-1471
- Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2.Bone Joint Res. 2018; 7: 414-421https://doi.org/10.1302/2046-3758.76.BJR-2017-0138.R1
- Expression of Bcl-2 protein in the epiphyseal plate cartilage and trabecular bone of growing rats.Histochem Cell Biol. 1997; 108: 45-55https://doi.org/10.1007/s004180050145
- Increased Bcl-2/p53 ratio in human osteoarthritic cartilage: a possible role in regulation of chondrocyte metabolism.Ann Rheum Dis. 2005; 64: 217-221https://doi.org/10.1136/ard.2004.022590
- Immune privilege or inflammation? The paradoxical effects of Fas ligand.Arch Immunol Ther Exp (Warsz). 2000; 48: 73-79
- Macrophage-inducing FasL on chondrocytes forms immune privilege in cartilage tissue engineering, enhancing in vivo regeneration.Stem Cells. 2014; 32: 1208-1219https://doi.org/10.1002/stem.1636
- Origin of Cam Morphology in Femoroacetabular Impingement.Am J Sports Med. 2018; 46: 478-486https://doi.org/10.1177/0363546517697689
Article info
Publication history
Footnotes
Author Contribution: All authors contributed to the study conception and design. All authors read and approved the final manuscript.
Haixiang Liang: Data acquisition/interpretation, article drafting
Eric V. Neufeld: Data acquisition/interpretation, article drafting
Benjamin C. Schaffler: Data acquisition/interpretation, article drafting
Michael Mashura: Data acquisition, article drafting
Chelsea Matzko: Data acquisition, article drafting
Daniel A. Grande: Data acquisition/interpretation, article drafting
Srino Bharam: Data acquisition/interpretation, article drafting
All specimens used in this study were obtained with tissue donation programs approved by Northwell Health Tissue Donation Program (TDP) Committee for Participant Protection (COPP) (TAP1711, TAP1902) of Northwell Health.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy